Intermittency on catalysts: symmetric exclusion

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intermittency on catalysts : symmetric exclusion

We continue our study of intermittency for the parabolic Anderson equation ∂u/∂t = κΔu + ξu, where u : Z × [0,∞) → R, κ is the diffusion constant, Δ is the discrete Laplacian, and ξ : Z × [0,∞) → R is a space-time random medium. The solution of the equation describes the evolution of a “reactant” u under the influence of a “catalyst” ξ. In this paper we focus on the case where ξ is exclusion wi...

متن کامل

un 2 00 7 Intermittency on catalysts

The present paper provides an overview of results obtained in four recent papers by the authors. These papers address the problem of intermittency for the Parabolic Anderson Model in a time-dependent random medium, describing the evolution of a " reactant " in the presence of a " catalyst ". Three examples of catalysts are considered: (1) independent simple random walks; (2) symmetric exclusion...

متن کامل

A ug 2 00 9 Intermittency on catalysts : voter model

In this paper we study intermittency for the parabolic Anderson equation ∂u/∂t = κ∆u + γξu with u : Z d × [0, ∞) → R, where κ ∈ [0, ∞) is the diffusion constant, ∆ is the discrete Laplacian, γ ∈ (0, ∞) is the coupling constant, and ξ : Z d × [0, ∞) → R is a space-time random medium. The solution of this equation describes the evolution of a " reactant " u under the influence of a " catalyst " ξ...

متن کامل

Symmetric Inclusion-Exclusion

One form of the inclusion-exclusion principle asserts that if A and B are functions of finite sets then the formulas A(S) = ∑ T⊆S B(T ) and B(S) = ∑ T⊆S(−1) |S|−|T A(T ) are equivalent. If we replace B(S) by (−1)B(S) then these formulas take on the symmetric form A(S) = ∑ T⊆S (−1) B(T ) B(S) = ∑ T⊆S (−1) A(T ). which we call symmetric inclusion-exclusion. We study instances of symmetric inclusi...

متن کامل

SYMMETRIC INCLUSION - EXCLUSION Ira

One form of the inclusion-exclusion principle asserts that if A and B are functions of finite sets then the formulas A(S) = ∑ T⊆S B(T ) and B(S) = ∑ T⊆S(−1) |A(T ) are equivalent. If we replace B(S) by (−1)|S|B(S) then these formulas take on the symmetric form A(S) = ∑

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Probability

سال: 2007

ISSN: 1083-6489

DOI: 10.1214/ejp.v12-407